Wp/lus/Hmunramzirna

From testwiki
Jump to navigation Jump to search
Möbius-a puanthem

Hmunramzirna hi chhiarkawp péng lian tak pakhat a ni a, péng tam tak lian pui puia ṭhen lehchhawn a ni. Hliam/tihkeh/tihthlèr awm lova taksa herhsawihin a vawnṭhat nihphungte chhuina a ni. Entirnan: Rubber phêkah hian pentuiin rin bial la, rubber chu pawt thlër lovin pawt sàwi tâ la, a pentui chuan bial kaihsawih a la ziak reng a. Chuvangin i bial ziah khan bialna chu vawngṭha lo mah sé, inzawmna a la vawngṭha: a bial kha a rubber i pawh thlèr hma chuan a inzawm reng tho vang. I bial siamin nihphung a vawnṭhat chu inzawmna a ni, bialna erawh a vawngṭha lo thung. Chuvangin hemi chungchang bîkah chuan inzawmna kha vawnṭhat-nihphung kan ti.

Hmunramzirna chuan hetiang a entirna hmanga sawifiah theih leh entirna hmanga sawifiah theih lëm loh nihphung tam tak a zir a ni.

Lo chhuah dàn

Hmunramzirna hi leitehna chhiarkawpa zawhna ṭhenkhat chhàn tumna aṭanga lo inṭan chho a ni a; Leonhard Euler-a'n kum 1736-a K¨nigsberg Lei Pasarihte a zirbingna thuziak kha hmunramzirna thuziak mumal hmasa bera ngaih a ni.

Hmunramzirna vuah chhan

Hmunramzirna hi sap ṭawng chuan topology tih a ni a, chu thumal chu zerman thumal Topologie tih aṭanga thlâk rem a ni a, chu zerman thumal chu Grik thumal τόπος (topos), chu chu hmun tihna, leh λόγος (logos), chu chu zirna tihna, aṭanga lâk lehchhawn a ni. He zerman thumal Topologie tih hi kum 1847-a Johann Benedict Listing-a lehkhabu Vorstudien zur Topologie tiha ziah hmasak ber a ni a, amaherawhchu JB Listing-a hian ziaka a chhuah hma kum 10 vêl zetah a thukhawchang sawinaah a lo hmang tawh a ni.

A bulbal

Tunlai hmunramzirna hi khawnkhawmzirna nèn ṭhenhran hleih theih lohvin a inkai bet tlat a, hmunramzirna hi khawnkhawmzirna thukhawchang hmang lo chuan zir theih loh a ni.

A chhiarkawp

Template:Wp/lus/chanchinkimchang X hi khawnkhâwm lo ni ta se, τ hi X khawnpéng chhungkua lo ni ta bawk se. (Chhungkua, khawnpéng tih te hi a phêk hrangah kan hrilhfiah ang). τ hian a hnuaia nihphung pathumte khu a neih chuan X hmunramthlá tiin kan sawi ang:

  1. khawnkhawm ruak leh X te hi τ-ah a awm ve ve.
  2. τ chhungkhung engzât pawh (chhiarsen loh tiamin) suihkhâwmin τ chhungkhung bawk a chhuak.
  3. τ chhungkhung bichin intawhnain τ chhungkhung bawk a siam chhuak.

Hetiang a chunga nihphung pathumte khi τ-vin a neih chuan, kan sawi lâwk angin, τ hi hmunramthla kan ti a, kawpchawi (X,τ) hi Hmunram kan ti. A hmunramthla τ hi hriat sâ emaw, bituk sâ emaw a nih chuan, thil awlsam zâwk nan "X hi Hmunram a ni" kan ti mai bawk ṭhin.

Entirna

  1. Khawnkhawm X hi X={1,2,3,4} lo ni ta se, τ:={{},{1,2,3,4}} hi hmunramthla a ni. Hei hi a të leh mawlmang thei ang ber a nih avangin hmunram holam tiin kan ko.
  2. Khawnkhawm X hi X={1,2,3,4} lo ni leh ta se, τ:={{},{2},{1,2},{2,3},{1,2,3},{1,2,3,4}} lo ni ve leh thung ta se. τ hi hmunramthla a ni. Chutiang zëlin.

Thulâkna

  • Munkres, James R., Topology, 2nd Edition, Prentice Hall, 1975
  • von Querenburg, Boto, Mengentheoretische Topologie, 3. Auflage, Springer-Verlag, 2001

Template:Wp/lus/mizopawl

Template:INTERWIKI