Wp/rki/ဂဏန်းသင်္ချာဧ အခြီခံသီအိုရမ်

From testwiki
Revision as of 08:08, 23 April 2023 by imported>YaThaWinTha (Adding interwiki links to d:Q117827113)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

ကိန်းသီအိုရီတွင် ဂဏန်းသင်္ချာဧ အခြေခံသီအိုရမ် (Fundamental theorem of arithmetic) ဆိုသည့် ဂဏန်းသင်္ချာတွင် အခြေခံအုတ်မြစ်ဟု ဆိုနိုင်ရေ ဆခွဲကိန်းခွဲခြင်း (factorization) နန့် သက်ဆိုင်သည့် နိယာမတစ်ခုဟိရေ။ ဒေသီအိုရမ်ဧ မူရင်းမှာ နိ့စဉ်သုံး ကိန်းဂဏန်းတိ၊ (ပို၍ တိတိကျကျဆိုရကေ ကိန်းပြည့်တိအစု ၊) နန့်သာ ပတ်သက်ဧ။ ယကေလည်း သင်္ချာပညာ ထွန်းကားကျယ်ပြန့်လာရေနန့်အမျှ ဒေသီအိုရမ်ကို ယေဘုယျပြုထားသည့် သင်္ချာသဘောတရားတိလည်း ထွန်းကားလာရာ၊ နိ့စဉ်သုံး ကိန်းပြည့်တိအပြင် အခြားအက္ခရာသင်္ချာတည်ဆောက်ပုံ အမြောက်အမြား သာဓကအားဖြင့် ကိန်းပြည့်မြောက်ကိန်းတိ (integer coefficients) သာ သုံးသည့် ပိုလီနိုမီရယ်တိ (polynomials) အစု၊ သင်္ကေတအားဖြင့် [x]၊ တွင်လည်း ဒေနိယာမ မှန်ရေ။ ဆိုလိုရေမှာ [x] မှ သုညမဟုတ်သည့်၊ ယူနစ်မဟုတ်သည့် (non unit) ပိုလီနိုမီရယ်တိုင်းကို ထပ်မံဆခွဲ မခွဲနိုင်ရေ ပိုလီနိုမီရယ်တိ (irreducible polynomials) သုံး၍ ဆခွဲ ခွဲနိုင်ရေ။ ထိုဆခွဲပုံတိမှာလည်း (ရှေ့နောက်အစီအစဉ်ကို မကြည့်ကေ) တူညီရေ။ (ဒေတွင် တစ်ထက်ကြီးရေ ကိန်းပြည့်အစား သုညမဟုတ်သည့်၊ ယူနစ်မဟုတ်သည့် ပိုလီနိုမီရယ်၊ သုဒ္ဓကိန်းအစား ထပ်မံဆခွဲ မခွဲနိုင်ရေ ပိုလီနိုမီရယ် စရေဖြင့် အစားထိုးအသုံးပြုခြင်းမှအပ၊ နိယာမဧ အမြုတေသဘောမှာ အတူတူပင်။) တွင်လည်း ဒေသီအိုရမ် မှန်ကန်ကြောင်း ခေတ်သစ်အက္ခရာသင်္ချာဧ ကျေးဇူးကြောင့် ဂုအခါ သိလာရရေ။

ဒေနိယာမဧ မူရင်းအဆိုကို အကြမ်းရီးရကေ ဒေပိုင်ဖြစ်ရေ။

တစ်ထက်ကြီးသည့် မည်သည့် ကိန်းပြည့် (integer) ကိုမဆို

  • သုဒ္ဓကိန်းအချို့ဧ မြောက်လဒ်အဖြစ် ဆခွဲကိန်း ခွဲနိုင်ရေ၊
  • ဆခွဲကိန်းခွဲရာတွင် မည်သို့ပင်ခွဲစေကာမူ၊ အခါခါခွဲစေကာမူ ရဟိသည့် ဆခွဲကိန်းတိမှာ (ရှေ့နောက်အစီအစဉ်ကို မကြည့်ကေ) အတူတူပင်ဖြစ်ရေ။

သာဓကအားဖြင့် ၁၉၆၀ ကိုကြည့်ပါ။ ဒေကိန်း ၁၉၆၀ မှာ တစ်ထက်ကြီးရေ ကိန်းပြည့်ဖြစ်ရေကြောင့် နိယာမဧ ပထမအဆိုအရ ၁၉၆၀ ကို သုဒ္ဓဆခွဲကိန်း ခွဲ၍ ရကို ရရမည်ဖြစ်ရေ။ အောက်ပါအတိုင်း ဆခွဲကိန်း ခွဲရေ ဆိုပါစို့။

၁၉၆၀ = ၂ x ၂ x ၂ x ၅ x ၇ x ၇

ဆခွဲကိန်းတိအားလုံးမှာ သုဒ္ဓကိန်းတိဖြစ်ပြီး၊ ၂ သုံးခါ၊ ၅ တစ်ခါ၊ ၇ နှစ်ခါ ပါကြောင်း သတိပြုပါ။ ၎င်း ကိန်း ၁၉၆၀ ကိုပင် အောက်ပါအတိုင်း ရီးနိုင်ရေ။

၁၉၆၀ = ၅ x ၂ x ၂ x ၇ x ၂ x ၇

ဆခွဲကိန်းတိအားလုံးမှာ သုဒ္ဓကိန်းတိဖြစ်ပြီး၊ ၎င်းကိန်းတိကို ပထမအကြိမ် ဆခွဲကိန်းခွဲစဉ်အခါကဲ့သို့ ငယ်စဉ်ကြီးလိုက် စီမထားကေလည်း ပါဝင်သည့် သုဒ္ဓကိန်းတိကို ရေတွက်ပါက၊ ပထမအကြိမ်မှာကဲ့သို့ပင် ၂ သုံးခါ၊ ၅ တစ်ခါ နန့် ၇ နှစ်ခါပင် ဖြစ်ရေ။ (ဂုဖော်ပြထားရေ ဆခွဲကိန်း စီစဉ်ပုံနှစ်မျိုးမှာ ဖြစ်နိုင်သမျှ အစီအစဉ် အမျိုး ၆၀ စနစ်တကျ ရေတွက်ခြင်းဟု ခေါ်ဆိုနိုင်မည့် ကွန်ဘိုင်နတိုးရစ် (combinatorics) ဘာသာရပ်သုံး၍ 6!3!1!2!=60 ဟုတွက်ခြင်းဖြစ်ရေ။ ထဲမှ နှစ်ခုသာရေဖြစ်ရေ။ ၎င်း အစီအစဉ် အမျိုး ၆၀ ထဲမှ မည်သည့် အစီအစဉ်တွင်မဆို ၂ သုံးခါ၊ ၅ တစ်ခါ၊ ၇ နှစ်ခါ ပါကို ပါရမည်ပင်။) ဒေပိုင် ဆခွဲကိန်းတိ အစီအစဉ် မတူညီစေကာမူ ပါဝင်သည့် သုဒ္ဓဆခွဲကိန်းတိ (၂၊ ၅ နန့် ၇) တူညီခြင်းနန့် ၎င်းသုဒ္ဓဆခွဲကိန်း တစ်ခုချင်းစီဧ မြောက်လဒ်တွင် ပါဝင်မှု အကြိမ်အရေအတွက် (၂ သုံးခါ၊ ၅ တစ်ခါ၊ ၇ နှစ်ခါ) တူညီခြင်းကို ဆခွဲကိန်းတိမှာ (ရှေ့နောက်အစီအစဉ်ကို မကြည့်ကေ) အတူတူပင်ဖြစ်ရေ၊ အင်္ဂလိပ်ဖြင့် "prime factors are unique up to the order" ဟု ခေါ်ရေ။

Template:INTERWIKI